Abstract:A visual metaphor constitutes a high-order form of human creativity, employing cross-domain semantic fusion to transform abstract concepts into impactful visual rhetoric. Despite the remarkable progress of generative AI, existing models remain largely confined to pixel-level instruction alignment and surface-level appearance preservation, failing to capture the underlying abstract logic necessary for genuine metaphorical generation. To bridge this gap, we introduce the task of Visual Metaphor Transfer (VMT), which challenges models to autonomously decouple the "creative essence" from a reference image and re-materialize that abstract logic onto a user-specified target subject. We propose a cognitive-inspired, multi-agent framework that operationalizes Conceptual Blending Theory (CBT) through a novel Schema Grammar ("G"). This structured representation decouples relational invariants from specific visual entities, providing a rigorous foundation for cross-domain logic re-instantiation. Our pipeline executes VMT through a collaborative system of specialized agents: a perception agent that distills the reference into a schema, a transfer agent that maintains generic space invariance to discover apt carriers, a generation agent for high-fidelity synthesis and a hierarchical diagnostic agent that mimics a professional critic, performing closed-loop backtracking to identify and rectify errors across abstract logic, component selection, and prompt encoding. Extensive experiments and human evaluations demonstrate that our method significantly outperforms SOTA baselines in metaphor consistency, analogy appropriateness, and visual creativity, paving the way for automated high-impact creative applications in advertising and media. Source code will be made publicly available.
Abstract:Unified image generation and editing models suffer from severe task interference in dense diffusion transformers architectures, where a shared parameter space must compromise between conflicting objectives (e.g., local editing v.s. subject-driven generation). While the sparse Mixture-of-Experts (MoE) paradigm is a promising solution, its gating networks remain task-agnostic, operating based on local features, unaware of global task intent. This task-agnostic nature prevents meaningful specialization and fails to resolve the underlying task interference. In this paper, we propose a novel framework to inject semantic intent into MoE routing. We introduce a Hierarchical Task Semantic Annotation scheme to create structured task descriptors (e.g., scope, type, preservation). We then design Predictive Alignment Regularization to align internal routing decisions with the task's high-level semantics. This regularization evolves the gating network from a task-agnostic executor to a dispatch center. Our model effectively mitigates task interference, outperforming dense baselines in fidelity and quality, and our analysis shows that experts naturally develop clear and semantically correlated specializations.
Abstract:The aesthetic quality assessment task is crucial for developing a human-aligned quantitative evaluation system for AIGC. However, its inherently complex nature, spanning visual perception, cognition, and emotion, poses fundamental challenges. Although aesthetic descriptions offer a viable representation of this complexity, two critical challenges persist: (1) data scarcity and imbalance: existing dataset overly focuses on visual perception and neglects deeper dimensions due to the expensive manual annotation; and (2) model fragmentation: current visual networks isolate aesthetic attributes with multi-branch encoder, while multimodal methods represented by contrastive learning struggle to effectively process long-form textual descriptions. To resolve challenge (1), we first present the Refined Aesthetic Description (RAD) dataset, a large-scale (70k), multi-dimensional structured dataset, generated via an iterative pipeline without heavy annotation costs and easy to scale. To address challenge (2), we propose ArtQuant, an aesthetics assessment framework for artistic images which not only couples isolated aesthetic dimensions through joint description generation, but also better models long-text semantics with the help of LLM decoders. Besides, theoretical analysis confirms this symbiosis: RAD's semantic adequacy (data) and generation paradigm (model) collectively minimize prediction entropy, providing mathematical grounding for the framework. Our approach achieves state-of-the-art performance on several datasets while requiring only 33% of conventional training epochs, narrowing the cognitive gap between artistic images and aesthetic judgment. We will release both code and dataset to support future research.
Abstract:Recent advances in diffusion models have enhanced multimodal-guided visual generation, enabling customized subject insertion that seamlessly "brushes" user-specified objects into a given image guided by textual prompts. However, existing methods often struggle to insert customized subjects with high fidelity and align results with the user's intent through textual prompts. In this work, we propose "In-Context Brush", a zero-shot framework for customized subject insertion by reformulating the task within the paradigm of in-context learning. Without loss of generality, we formulate the object image and the textual prompts as cross-modal demonstrations, and the target image with the masked region as the query. The goal is to inpaint the target image with the subject aligning textual prompts without model tuning. Building upon a pretrained MMDiT-based inpainting network, we perform test-time enhancement via dual-level latent space manipulation: intra-head "latent feature shifting" within each attention head that dynamically shifts attention outputs to reflect the desired subject semantics and inter-head "attention reweighting" across different heads that amplifies prompt controllability through differential attention prioritization. Extensive experiments and applications demonstrate that our approach achieves superior identity preservation, text alignment, and image quality compared to existing state-of-the-art methods, without requiring dedicated training or additional data collection.
Abstract:Diffusion transformers have shown exceptional performance in visual generation but incur high computational costs. Token reduction techniques that compress models by sharing the denoising process among similar tokens have been introduced. However, existing approaches neglect the denoising priors of the diffusion models, leading to suboptimal acceleration and diminished image quality. This study proposes a novel concept: attend to prune feature redundancies in areas not attended by the diffusion process. We analyze the location and degree of feature redundancies based on the structure-then-detail denoising priors. Subsequently, we introduce SDTM, a structure-then-detail token merging approach that dynamically compresses feature redundancies. Specifically, we design dynamic visual token merging, compression ratio adjusting, and prompt reweighting for different stages. Served in a post-training way, the proposed method can be integrated seamlessly into any DiT architecture. Extensive experiments across various backbones, schedulers, and datasets showcase the superiority of our method, for example, it achieves 1.55 times acceleration with negligible impact on image quality. Project page: https://github.com/ICTMCG/SDTM.




Abstract:The stories and characters that captivate us as we grow up shape unique fantasy worlds, with images serving as the primary medium for visually experiencing these realms. Personalizing generative models through fine-tuning with theme-specific data has become a prevalent approach in text-to-image generation. However, unlike object customization, which focuses on learning specific objects, theme-specific generation encompasses diverse elements such as characters, scenes, and objects. Such diversity also introduces a key challenge: how to adaptively generate multi-character, multi-concept, and continuous theme-specific images (TSI). Moreover, fine-tuning approaches often come with significant computational overhead, time costs, and risks of overfitting. This paper explores a fundamental question: Can image generation models directly leverage images as contextual input, similarly to how large language models use text as context? To address this, we present T-Prompter, a novel training-free TSI method for generation. T-Prompter introduces visual prompting, a mechanism that integrates reference images into generative models, allowing users to seamlessly specify the target theme without requiring additional training. To further enhance this process, we propose a Dynamic Visual Prompting (DVP) mechanism, which iteratively optimizes visual prompts to improve the accuracy and quality of generated images. Our approach enables diverse applications, including consistent story generation, character design, realistic character generation, and style-guided image generation. Comparative evaluations against state-of-the-art personalization methods demonstrate that T-Prompter achieves significantly better results and excels in maintaining character identity preserving, style consistency and text alignment, offering a robust and flexible solution for theme-specific image generation.
Abstract:Visual generation models have achieved remarkable progress in computer graphics applications but still face significant challenges in real-world deployment. Current assessment approaches for visual generation tasks typically follow an isolated three-phase framework: test input collection, model output generation, and user assessment. These fashions suffer from fixed coverage, evolving difficulty, and data leakage risks, limiting their effectiveness in comprehensively evaluating increasingly complex generation models. To address these limitations, we propose DyEval, an LLM-powered dynamic interactive visual assessment framework that facilitates collaborative evaluation between humans and generative models for text-to-image systems. DyEval features an intuitive visual interface that enables users to interactively explore and analyze model behaviors, while adaptively generating hierarchical, fine-grained, and diverse textual inputs to continuously probe the capability boundaries of the models based on their feedback. Additionally, to provide interpretable analysis for users to further improve tested models, we develop a contextual reflection module that mines failure triggers of test inputs and reflects model potential failure patterns supporting in-depth analysis using the logical reasoning ability of LLM. Qualitative and quantitative experiments demonstrate that DyEval can effectively help users identify max up to 2.56 times generation failures than conventional methods, and uncover complex and rare failure patterns, such as issues with pronoun generation and specific cultural context generation. Our framework provides valuable insights for improving generative models and has broad implications for advancing the reliability and capabilities of visual generation systems across various domains.




Abstract:Diffusion Transformers (DiTs) have exhibited robust capabilities in image generation tasks. However, accurate text-guided image editing for multimodal DiTs (MM-DiTs) still poses a significant challenge. Unlike UNet-based structures that could utilize self/cross-attention maps for semantic editing, MM-DiTs inherently lack support for explicit and consistent incorporated text guidance, resulting in semantic misalignment between the edited results and texts. In this study, we disclose the sensitivity of different attention heads to different image semantics within MM-DiTs and introduce HeadRouter, a training-free image editing framework that edits the source image by adaptively routing the text guidance to different attention heads in MM-DiTs. Furthermore, we present a dual-token refinement module to refine text/image token representations for precise semantic guidance and accurate region expression. Experimental results on multiple benchmarks demonstrate HeadRouter's performance in terms of editing fidelity and image quality.
Abstract:This paper reviews published research in the field of computer-aided colorization technology. We argue that the colorization task originates from computer graphics, prospers by introducing computer vision, and tends to the fusion of vision and graphics, so we put forward our taxonomy and organize the whole paper chronologically. We extend the existing reconstruction-based colorization evaluation techniques, considering that aesthetic assessment of colored images should be introduced to ensure that colorization satisfies human visual-related requirements and emotions more closely. We perform the colorization aesthetic assessment on seven representative unconditional colorization models and discuss the difference between our assessment and the existing reconstruction-based metrics. Finally, this paper identifies unresolved issues and proposes fruitful areas for future research and development. Access to the project associated with this survey can be obtained at https://github.com/DanielCho-HK/Colorization.




Abstract:Personalized generation paradigms empower designers to customize visual intellectual properties with the help of textual descriptions by tuning or adapting pre-trained text-to-image models on a few images. Recent works explore approaches for concurrently customizing both content and detailed visual style appearance. However, these existing approaches often generate images where the content and style are entangled. In this study, we reconsider the customization of content and style concepts from the perspective of parameter space construction. Unlike existing methods that utilize a shared parameter space for content and style, we propose a learning framework that separates the parameter space to facilitate individual learning of content and style, thereby enabling disentangled content and style. To achieve this goal, we introduce "partly learnable projection" (PLP) matrices to separate the original adapters into divided sub-parameter spaces. We propose "break-for-make" customization learning pipeline based on PLP, which is simple yet effective. We break the original adapters into "up projection" and "down projection", train content and style PLPs individually with the guidance of corresponding textual prompts in the separate adapters, and maintain generalization by employing a multi-correspondence projection learning strategy. Based on the adapters broken apart for separate training content and style, we then make the entity parameter space by reconstructing the content and style PLPs matrices, followed by fine-tuning the combined adapter to generate the target object with the desired appearance. Experiments on various styles, including textures, materials, and artistic style, show that our method outperforms state-of-the-art single/multiple concept learning pipelines in terms of content-style-prompt alignment.